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The kinematical theory of M6ssbauer diffraction by magnetically ordered crystals is developed. The 
case of completely resolved Zeeman splitting of a M6ssbauer line is examined in detail. The expressions 
for coherent scattering amplitudes and scattering cross sections of ),-rays at magnetic and crystalline 
diffraction maxima are derived for the main types of magnetic ordering (ferromagnetic, antiferro- 
magnetic, weak ferromagnetic and helicoidal structures) in the case of the dipole M6ssbauer transition. 
A direct connexion between the polarization of the scattered quanta and the magnetic and crystalline struc- 
ture is revealed in the expressions obtained for polarization vector and the polarization density matrix (in 
the cases of polarized and unpolarized incident beams respectively). The explicit form of the polarization 
density matrix at magnetic reflexions for an antiferromagnet is given. The applications of the present 
results to experimental and theoretical investigations are discussed. 

In a number of theoretical (Afanas'ev & Kagan, 
1965, 1973; Kagan, Afanas'ev & Perstnev, 1968; 
Zhdanov & Kuz'min, 1968; Hannon & Trammel, 
1969; Afanas'ev & Perstnev, 1969; Belyakov & Ajva- 
zian, 1968, 1970; Chukhovskii & Perstnev, 1972) and 
experimental (Voitovetskii, Korsunskii, Novikov & 
Pazhin, 1968; Smirnov, Sklyarevskii, Voscanyan & 
Artem'ev, 1969; Parak, M6ssbauer, Biebl, Formanek 
& Hoppe, 1971; Artem'ev, Sklyarevskii, Smirnov & 
Stepanov, 1972; Artem'ev, Perstnev, Sklyarevskii, 
Smirnov & Stepanov, 1973; Mirzababaev, Smirnov, 
Sklyarevskii, Artem'ev, Izrailenko & Babkov, 1971) 
papers interesting features and possible applications of 
M6ssbauer diffraction were revealed. In particular, 
the experiments on M6ssbauer diffraction by mag- 
netically ordered crystals (Smirnov et al., 1969; 
Artem'ev et al., 1972, 1973) and crystals having com- 
plicated structures of electric field gradient (EFG) 
(Mirzababaev et al., 1971) have shown the practical 
feasibility of magnetic and EFG structure investiga- 
tions of crystals by means of M6ssbauer ),-ray diffrac- 
tion. Application of M6ssbauer diffraction to magnetic 
and crystalline structure investigations looks a prom- 

ising and useful supplement to X-ray, neutron, elec- 
tron diffraction methods because the M6ssbauer 
diffraction method (M6ssbauerography) has some 
additional advantages over conventional methods 
(Zhdanov & Kuz'min, 1968; Parak et al., 1971; 
Ajvazian & Belyakov, 1969a, b; Belyakov & Ajvazian, 
1969; O'Connor & Spicer, 1969; Batterman, Maracci, 
Merlini & Pace, 1973). Other promising fields of 
M6ssbauer diffraction investigation are the study of 
the ),-ray collective interaction with nuclei, the in- 
fluence of the crystal lattice on nuclear processes and 
related topics in nuclear physics (Afanas'ev & Kagan, 
1967). 

The theory of M6ssbauer diffraction was developed 
mostly for crystals without magnetic field and EFG in 
the sites occupied by M6ssbauer nuclei. In connexion 
with the above-mentioned experiments there is a need 
for a theory applicable to the cases of magnetically 
ordered crystals and crystals in which M6ssbauer 
nuclei are situated in the sites with non-zero EFG. In 
the papers published on this topic the simplest cases of 
magnetic ordering and EFG were examined in the 
kinematical approximation (Belyakov & Ajvazian, 
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1968, 1970; Ajvazian & Belyakov, 1969a, b; Andreeva 
& Kuz'min, 1969; Pham Zui Khien, 1970; Belyakov & 
Bokun, 1972a) and a general analysis of equations of 
the dynamical theory for magnetically ordered crystals 
was carried out (Hannon& Trammel, 1969; Afanas'ev 
& Kagan, 1973; Belyakov, 1971). In the present paper 
general kinematical formulae for M6ssbauer diffrac- 
tion are presented and their explicit form is given for 
all main types of crystals with magnetic ordering in 
the practically important limiting case of completely 
resolved Zeeman splitting of the M6ssbauer spectrum. 

The difference between X-ray and M6ssbauer dif- 
fraction by magnetically ordered crystals is mainly due 
to the dependence of the M6ssbauer scattering am- 
plitude on the magnitude and direction of the magnetic 
field at the scattering nucleus (Belyakov & Ajvazian, 
1968) [a weak spin dependence of the X-ray scattering 
amplitude (Keating, 1969) is completely neglected 
here]. Therefore, unlike X-ray diffraction, M6ssbauer 
diffraction may be used for direct determination of the 
structures of crystals in a fully analogous way to that 
used in the case of neutrons. The intensities of diffrac- 
tion maxima (in particular magnetic ones, if they exist 
for the examined structure) and the polarization of the 
scattered quanta depend on the magnetic structure of 
the crystals. Strictly speaking, M6ssbauer diffraction 
permits one to determine the ordering of the magnetic 
field at M6ssbauer nuclei, but since the determination 
of the type of magnetic-field ordering is equivalent to 
determination of the type of ordering of the atomic 
magnetic moments, we shall speak below about M6ss- 
bauer determination of magnetic structures in the 
common sense of these words. 

M6ssbauer ?-quanta are scattered both by nuclei 
and by electrons (Rayleigh scattering). In the typical 
experimental situation the Rayleigh scattering ampli- 
tude is bigger than or of the same order of magnitude 
as the nuclear amplitude. Therefore the intensity and 
polarization of the radiation at crystalline diffraction 
maxima are essentially dependent on interference be- 
tween the Rayleigh scattering and the nuclear scat- 
tering. In magnetic diffraction maxima, which are 
absent in the Rayleigh scattering, the same quantities 
are determined by the nuclear scattering only. 

Expressions for the coherent amplitude and the 
differential scattering cross section are given below for 
a magnetically ordered crystal with an arbitrary value 
of Zeeman splitting in the MOssbauer spectrum. For 
dipole M6ssbauer transitions explicit forms of these 
expressions for all main types of magnetic ordering 
are presented in the case of well resolved nuclear 
Zeeman splitting. 

I. General description of diffraction by magnetically 
ordered crystals 

Let us examine in the kinematical approximation a 
coherent scattering of ),-quanta by a magnetically 
ordered crystal containing M6ssbauer isotopes. Taking 

into account the expression for Rayleigh (James, 1950) 
and nuclear (Trammel, 1962) scattering amplitudes 
one readily obtains the amplitude of coherent scat- 
tering of a M6ssbauer quantum by the unit cell in the 
form: 

F =  FR(fi, fi') + FN(E; fi, fi')= re(fifi'*)F (R) 
+ S Pt(E;fi, fi')F~ N) , 

t 

P,(E, fi, fi ')= 1 C(k,k') FR 
2 k -  E - iT, + i r /  2 

× (w, w3'/e(f~t) ( ~ f ' * ) ,  

F~U)= ~ exp [ i (k-k ' )r , ] .  (1) 
r t 

Here FR(fi, fi') and Fu(E;fi, fi') are Rayleigh and nu- 
clear coherent amplitudes respectively, r~ = e2/mc 2 is the 
classical electron radius, E is the energy and fi is the 
polarization vector of the incident )'-quantum, fi' is 
the vector of the detected polarization of the scattered 
quantum, F (m is the Rayleigh (X-ray) structure am- 
plitude including a Debye-Waller factor 
exp [ -½Z(k-k ' ) ] ,  /'R and F are the radiation and full 
widths of the M6ssbauer transition, 

2j2+1 
C(k,k')=r/ 2j~-+l- exp [-½Z(k)-½Z(k ')] ,  

r/ is the abundance of the Mfissbauer isotope, k(k') 
is the wave vector of the incident (scattered)),- 
quantum, jl(j2) is the spin of the ground (excited) 
nuclear state. The index t marks the different Zeeman 
transitions via which the scattering proceeds. The 
Zeeman transitions are regarded as different ones if 
their energies Er are different or if (when the energies 
coincide) there are different directions of magnetic 
field Hr. fir(fi~) is the polarization vector of the )'- 
quantum emitted in the direction k(k') in the transition 
with index t, wr = wr(k) is a normalized angular dis- 
tribution of )'-quanta in the same transition, w~= 
wr(k'), unit vectors are marked by a caret ^, r~ is the 
radius vector of the site with magnetic field Hr. The 
quantities fit and w, depend on the multipolarity of 
M6ssbauer transition and the orientation of the 
magnetic field on the nuclei (Belyakov & Ajvazian, 
1968, 1970). 

For dipole transitions fit and wt are determined by 
the formulae 

f i ,  ( c o s  ^ " ^ = ~tZ2, +1 sin ~tZl,) exp (iMt~or), 
tan o~t=elr/e2,, ~lr = k  x HJlk x H~I , 

i~ ,  = ~. x i , , ,  (2) 

8a: z 
w, =e,(e~, 2 

+e2,), e,-- VI_t_Mt2 

x M , -  rnl Mr rnx 

e u = ( 1 - l )  sin (Or - Mt  rc/2)-  lM2, , 
e 2 , = ( 1 - 1 ) M 2 , - I  sin ( O r - M ,  re/2) 
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where l is equal to zero for an electric E 1 and to one for 
a magnetic M1 transition, mt and m2 are projections 
of the spins ja and j2 on the directions of Ht and Mr = 
m2-rnl, 0 is the angle between k and Hr, ~0t is the 
azimuthal angle of k (the polar axis is directed along 
H0. The quantities fi; and w~ are also determined by 
the equations (2) if k is substituted by k'. 

The differential cross section of coherent scattering 
by a magnetically ordered crystal related to one 
magnetic unit cell is equal to 

dae(k, fi; k', fi') (2n) 3 
dg2k, -- V ~ [F l2f i (k -k ' -2nx)  

(2n) ~ 
- V ~ [a(R)(fi'fi')+a(U)(E;fi'fi') 

+ a(Rn)(E;fi, fi')]. J ( k -  k' - 2nr) (3) 

where dg2k, is an element of solid angle in the k'  
direction, z is the reciprocal magnetic-lattice vector, 
V is the volume of the magnetic unit cell, a(R)(fi,~l'), 
a(N)(E;fi, fi ') and aCRN)(E;fi, fi ') are Rayleigh, nuclear 
and interference terms in the cross section respectively. 

The cross section (3) depends on the detected polar- 
ization vector fi'. The vector fi' =rio which maximizes 
the cross section is a polarization vector of the 
scattered 7-quantum. The corresponding cross section 
dcre(k, fi; k', f i ' ) -  do'E(k, fi; k') is a differential cross sec- 
tion of the incident 7-quantum with polarization vec- 
tor ft. From equations (1) and (3) it follows that rio 
depends on the initial polarization and the magnetic 
structure of the crystal and is determined by the ex- 
pression: 

fi0 = N/IN[, N = reF(R)k ' x (r X k') 

1 F}N) FR 
+ -~-  C(k,k') ~, E -  E,-------~ir/~ (w'w~)'2(~t)fi~" 

(4) 

The cross section dae(k, fi;k') can be derived from 
equation (3) by summation on vectors fi' of final 
polarization. The scattering cross" section of un- 
polarized radiation dae(k,k')  one gets by averaging 
danO~, fi; k') over the initial polarization. For magnetic 
reflexions the Rayleigh amplitude FR(fi, fl ')= 0 and the 
cross section (3) reduces to the nuclear term a (N) only. 

For an unpolarized incident beam the scattered 
radiation is partially polarized. The corresponding 
polarization density matrix is 

^ . t A t  

do'e(k, nj, k )Q(n0j) 
Q.,.= j=1.2 (5) 

d E0,,rj;k') 
J = l , 2  

where rl, r2 are orthogonal unit vectors of the initial 
polarization, fi0j is the polarization vector of the 
scattered quantum determined by equation (4) with 
fi=fi:, and o(ro:) is the polarization density matrix 
corresponding to the polarization vector fioj. 

From equations (4), (5) it follows that the polariza- 
tion of quanta scattered at crystalline reflexions con- 
tains information on both the magnetic and crystalline 
structures. The polarization density matrix for magne- 
tic reflexions depends not only on the nuclear param- 
eters but on the magnetic structure and the location 
in the unit cell of M6ssbauer atoms. 

II. The case of completely resolved Zeeman splitting 

The formulae given above determine the intensity and 
polarization of the coherently scattered radiation for 
arbitrary relations between Zeeman spliting and the 
width of the M6ssbauer line. In the experimentally 
important case of completely resolved Zeeman 
splitting the expressions for amplitudes and cross sec- 
tions become essentially simpler. In this case M6ss- 
bauer scattering proceeds via definite Zeeman levels 
of the ground and excited nuclear states and therefore 
only one term with Et equal to the energy E0 of the 
corresponding Zeeman transition is essential in the 
sum of equation (1). 

Diffraction for all the main types of magnetic 
ordering in crystals is examined below for dipole 
M6ssbauer transitions in the case of completely 
resolved Zeeman splitting, which is the same for all 
M6ssbauer nuclei in the unit cell (the magnetic fields 
Ht may be different in orientation only). The explicit 
forms of the coherent amplitude and the nuclear a in) 
and interference a (RN) terms of the daE(k,k') scattering 
cross section for unpolarized quanta are given. 

1. Ferromagnet 
There is one and only one value of magnetic field 

H~-=H. One can readily find the coherent amplitude 
from equations (1) and (2). The nuclear and inter- 
ference terms in the cross section are 

1 C2(k,k,)IFtN)[ 2 y~ a(fS) = ~ ( E -  Eo) 2 + F2/4 " 

x ½(sin 2 0+21M[ cos 2 0) 
x (sin 2 0'  +2[M[ cos 2 0 ' ) ,  

(r (NR)- re C(k,k')IF(mF(N)[ 7~ 
k (E-Eo)2+F2/4 

× {[A(M) cos fiNS + B(M) sin ONR] (E-- Eo) 
/-, 

+ -~- [A(M) sin JNR-- B(M) cos JNR]}, 

7Z 
A ( M ) = c o s  MAyo(sin [(1--l)O+(--M)l+l--f] 

×sin [(1-l)O' + ( - M ) l + 1 2 ]  

× (sin 0 sin O '+cos  0 cos O' cos A~o) 

+sin [ lO+(-M)2- '  2- ] 

(6) 

A C 3 1 A  - 3* 
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xsin [lO'+(--M)2-~2-] cos A~} 

+ sin z MA¢[(1 - l) (cos z 0 + cos 2 0')  
+ 2l cos 0 cos 0 ' ] ,  

B(M) -- tan MA¢{A(M) - [(1 - l) (cos2+0 cos ~ 0 ')  
+ 2 l  cos 0 cos 0 ' ]} ,  

where yM=Faet is a partial  radiat ion width for the 
Zeeman transition, 0(0') is the angle between k(k')  
and H, A ~ = ( a - ¢  is the difference between the 
azimuth angles of  k and k'  (see Fig. 1), 6 ~  is the 
phase of F(N)F (~)* and the meaning of l is the same as 
in equation (2). 

2. Antiferromagnet 
The magnetic field Ht takes two values, H and - H .  

The nuclear coherent amplitude has the form: 

F~.,f.(E;fi, f i ' )= -~-k- C(k,k ' )  E-Eo+iF/2 (7) 

x (ww')'/E [(~;,) (~,~'*) 
+ (fifi~) ~a'*a,.~ ~-~N> 1 

where the subscript t =  1,2 is replaced by H, - H and 
all other quantities are defined above. 

For  crystals with a symmetry centre --_H~-'(N) =IF(nN)[, 
the nuclear term in the cross section has the form: 

o.(N) __ i X~ 
a~. -- ~- C2(k,k ') IF~N~I' (E- EoY + r~14 

x [(sin E O+EIMI cos z 0) (sin z 0 ' + 2 I M I  cos z O') 
+ cos (2MAyo-6) sin z 0 sin z 0'] (8) 

where 6 is the phase of  F(N)~'(N)*n~-n (for magnetic re- 
flexions 6=~z). The interference term ,,(~N) is deter- t ,  a f .  

mined by equation (6) for a ferromagnet  if the factor 
in the curly bracets is replaced by 

[A(M) cos 6n + A ( - M )  cos fin + B(M) sin 6n 

+ B ( - M )  sin 0 _ h i .  (E-Eo) 
F 

+ ~ -  [A(M) sin f in+A(-M) sin O-U 

--B(M) COS O n - B ( - M )  cos f -HI  

where 6n(f_H) is the phase of F (u)~'(~)*~r'(u) ~(R)*~ At H . L  k.t  _ H . t  l "  

magnetic reflexions only the nuclear term in equation 
(8) is not  equal to zero and equation (8) holds for 
crystals with a symmetry centre as well as for crystals 
without one. It follows from equation (8) that  for 
M6ssbauer  transit ions with M - - 0  magnetic reflexions 
are absent. Note  that  the angular  dependence of  the 
magnetic reflexion intensity determined by equation 
(8) turns out to be correct for an arbi t rary value of 
Zeeman splitting of the M6ssbauer  spectrum. 

3. Weak ferromagnet 
The magnetic field Ht takes two values, H and 

H o The angle between H and He is z c - (  where ( is a 

small quantity.  The scattering cross section at magne- 
tic reflexions for transitions with M = 0  is equal to 

1 IF~N)I 2 .~N)r  ~ - 0 )  = ~-  ~' wf.~'~ -- C2(k,k ') . 2  sin 2 (/2 

x [sin E 0 + sin 2 0 '  -- cos 2 Ip t - -  C O S  2 l i l t  

+ (cos 0 cos ~' + cos 0' cos ~,' 
- 2  cos ~u cos ~,' sin (/2) 2 

+ 2 sin (/2(cos 0 cos V + cos 0 '  cos ~,' 
- s i n  ( /2)] .  (9) 

The angles (, 0(0'), ~,(~,') are defined in Fig. 1, where 
H f = H + H~. 

For  transitions with M =  _+ 1 the expressions for 
the coherent amplitudes and cross sections differ from 
the case of the antiferromagnet  (with antiferromagnetic 
axis A-A; see Fig. 1) by small terms proport ional  to ( 
and therefore are not given here. 

4. Helicoidal structure 
Let us examine the FS spiral. This structure is com- 

pletely determined by an angle fl and a vector k0. The 
direction of k0 determines the orientation of  the heli- 
coidal axis, 2n/ko is the magnetic period and fl is the 
angle between magnetic field and the axis. In equation 
(3) x=xcr+sk0  correspond to magnetic reflexions 
(satellites) where xcr is the reciprocal-lattice vector and 
the integer s:#0. Because the direction of  the atomic 
magnetic moments  (for constant  fl) is determined by 
the azimuthal angle ~ (counted around the helicoidal 
axis) the scattering amplitude by an individual a tom 
f will depend on ~. For  this reason the coherent am- 

A 
I 
I 
I 

kff \ , ,  

@ ~ \ \ \  ^ 

/ 
/ 

I 
i 

A 
Fig. 1. The geometry of the M6ssbauer effect with a magnetic 

field. 
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plitude F depends on s and is equal to Fourier trans- 
form of the amplitude f(a):  

F~= ~ f(a) exp (is00da. (10) 

The number of satellites depends on the multi- 
polarity of the transition and in the case of the FS 
spiral is equal to 4L; for the CS spiral it is equal to 
(4L) 2. The explicit form of the coherent amplitude for 
dipole transitions is given by Belyakov & Bokun 
(1972b). 

For a crystal with one M6ssbauer nucleus in the 
unit cell the nuclear term in the scattering cross section 
is determined by the following expression: 

o . ( N )  f , , _  
h e l . k O  - -  

1 
0, _+ 1, _ 2) = ~-2- CE(k,k ') 

(7M/16) 2 
( E -  g o )  2 -[- F2/4 

~- sin 4 fl(1 +cos 2 0) (1 +cos 2 0') --+ (s= + 2), 

2 sin 4 fl(cos 2 f l ) l - lml[(1-  M cos fl)EIml 
× (1 + cos 2 0) sin 2 0' + (1 + M cos fl)21ml 
x sin 2 0(1 +cos 2 0 ' ) + ( - ½  sin 2 fl)ltal 

× sin 20 sin 20' cos A~o ---> (s= + 1), (l 1) 
X 

(sin 4 f l+8lm[  cos 2 fl) (1 +cos 2 0) (1 +cos 2 0') 
+ 8(c0s4 f l - l M [  cos 2fl) sin 2 0 sin 2 0' 
+½(8+8 cos 2 f l ) lu l ,  sin 2 ( 2 -  Iml)fl 
× sin 20 sin 20' cos A~o 
+ sin 4 fl sin 2 0 sin E 0' cos 2Aq~ --> (s = 0) 

where 0(0') is the angle between the helicoidal axis and 
k(k'), ~0(~0') is the azimuthal angle of k(k') (counted 
around the helicoidal axis), A~0=~o-~o'. The inter- 
ference term ,,~RN) differs from zero for s = 0 only and ~'~ h e l .  

is determined by equation (6) if for A(M),B(M) we 
use the following expressions: 

A(M)=(IM[ COS 2 ~-~- 2 -IMI sin 2 fl) 

× [(1 + cos 0 cos 0') cos A~0 + (2 / -  1) 
× (cos 0 - c o s  0') sin A~0] 
+ 2-1ml[l +( -1 )m cos 2fl] sin O sin O ', (12) 

B(M)=  M(2l -  1) cos fl[(21- 1) 
x (1 +cos 0 cos 0') sin Acp- (cos 0 - c o s  0') 
x cos &0]. 

The polarization characteristics of quanta scattered 
at the satellites are examined by Belyakov & Bokun 
(1972b). 

Note that results of diffraction measurements are 
described as a rule not by equations (6), (8), (9), (11) 
directly but by the expressions derived from these 
by integration over the energy with some weight 
function included. The form of this function and the 
results of the corresponding integration are deter- 
mined by the shape of the M6ssbauer line of the source 
(and the detector if a resonant detector is used) and 
are well known (Pham Zui Khien, 1970; O'Connor & 
Black, 1964). 

III. Po!arization properties 

Let us examine the polarization of M6ssbauer quanta 
at diffraction maxima. In the general case the polariza- 
tion density matrix of the scattered quanta ~o(E) 
depends on the energy E and the degree of polariza- 
tion of the incident beam [see equations (4) and (5)]. 
The dependence of ~o(E) on the energy leads to a 
dependence of the results of polarization measure- 
ments on the energy line shape of the incident beam 
and on the energy resolution of the detector. The 
polarization characteristics are given below for the 
case when ~) does not depend on energy, namely for 
magnetic reflexions for an antiferromagnet. The 
density matrix (5) of the polarization unit vectors 
~ = k '  × a / l k '  x HI, ~=1~'  x ~ has the following 
Stokes parameters for the M1 transition: 

sin 2 0 cos 0' sin 2Aq~ 
(1 = cosE-~-c-0s2-/), + s~n~ 0sin 2 0' sin 2 Aq) ' 

( 2 = 0 ,  (13) 
C O S  2 0 t - - C O S  E 0--sin 2 0 (1 -t" C O S  2 0 t) sin E A(p 

To obtain corresponding expressions for the E1 
transition it is enough to make the following substitu- 
tion in equation (13): (1--+ - ( 1  and (3--+ - (3 .  

The density matrix (13) is real (~2=0). This means 
that the scattered radiation is partially linearly 
polarized. The corresponding vector of linear polar- 
ization and the unit vector ~ form the angle v which 
is determined by the relation ctan 20=(3/(1. If (2=0 
the density matrix is diagonal in the unit vectors used 
and the scattered radiation is partially polarized along 
one of them (along ~ ,  if (3 > 0 and along ~ ,  if (3 < 0; 
if (3 = (1 = 0 the radiation is unpolarized). In particular 
the scattered quanta are polarized along one of the 
polarization unit vectors ~ or ~ if the antiferro- 
magnetic axis lies in the scattering plane or is 
orthogonal to it. In the first case the degree of polar- 
ization P=]cos  2 0 - c o s  2 0']/(cos 2 0+cos  2 0'); in the 
latter case scattered radiation is fully polarized. Note 
that the polarization density matrix (13) for magnetic 
reflexions does not depend on the location of the atoms 
in the unit cell. It depends on the orientations of the 
magnetic fields only. Therefore measurement of the 
polarization density matrix for magnetic reflexions 
determines uniquely the orientation of the antiferro- 
magnetic axis. The polarization density matrix for 
crystalline reflexions depends not only on the orienta- 
tion of the magnetic fields but also on the location of 
the atoms in the unit cell (Andreeva & Kuz'min, 1973). 
Therefore polarization measurements may be used to 
obtain information on crystal structure. 

Conclusion 

The results of the kinematical theory of M6ssbauer 
diffraction given above are interesting from both 
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theoretical and experimental points of view. The 
formulae presented may be directly used for descrip- 
tion of an experiment under the conditions which 
justify application of the kinematical approximation. 
For the strongest reflexions in the case of 100% 
abundance of the M6ssbauer isotope the kinematical 
approximation is applicable at exact resonance only 
for a very thin crystal with the thickness d< dmax"- 
10 -4 cm. For smaller abundance dma x increases in- 
versely proportional to the abundance. If the crystal 
is thick enough, the kinematical approximation is not 
applicable at some distance from the exact resonance, 
where the nuclear scattering cross section is smaller. 
In direct analogy with X-ray diffraction, M6ssbauer 
diffraction by mosaic crystals may be described by the 
formulae given if the absorption (James, 1950) and the 
dependence of the absorption coefficient on polariza- 
tion (Perstnev & Chukhovskii, 1973) are taken into 
account. 

The results of the kinematical theory are also useful 
in the dynamical theory. The expressions for the 
coherent amplitudes enter into the formulae of the 
dynamical theory. Therefore the explicit form of the 
amplitude given above can be used in the dynamical- 
theory analysis of the dependence of the reflected 
intensity and polarization on the magnetic structure 
of the crystal and the ),-quantum energy. 

It is useful to keep in mind also that the dynamical 
theory expressions for the intensity and polarization 
of the scattered quanta in the limit of thin crystals 
reduce to the corresponding expressions of the present 
paper. 
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